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TECHNICAL NOTE 3968

THE APPLICATION OF MATRIX METHODS TO COORDINATE
TRANSFORMATIONS OCCURRING IN SYSTEMS STUDIES
INVOLVING LARGE MOTIONS OF ATRCRAFT

By Brian F. Doolin

SUMMARY

The purpose of this paper is to show the method and advantages of
matrix algebra in setting up the geometric aspects of problems of airplane
motion. Such aspects arise particularly when studies of systems which
include aircraft are being made. The geometry is formilsted by fixing
quantities whose relative motions are to be studied, each in a coordinate
system of its own. The various coordinate systems are related to each
other by orthogonal transformations in matrix form, end the parameters
defining the transformations are found in terms of the dynsmical varisbles
of the problem with the help of the transformation matrices. The compact
notation of matrix algebra permits a clear view of the geometry involved.
Use of matrix algebra provides & routine procedure for computing the
detailed expressions required in a particular problem, The first part
of the paper discusses those aspects of matrix algebra required for use
in orthogonal transformations. The second part shows how to use orthogonal
transformations in matrix form by applying them in several examples.

INTRODUCTTION

There are many problems currently under study that concern the motion
of one or more alrcrarft over relatively long periods of time. For example,
long trajectories are involved in some studies of very high-altitude, high-
speed aircraft. Another example is provided by current fire-control
systems studies where the relative motion of two alrcraft is inwvolwved.

The elements of interest in such problems, in one case the position and
attitude of the aircraft with respect to & nonfliat earth, in another the
relative poslitlons and rates of the two alrcraft, are referred to coordi-
nate systems that undergo large changes in orientation. The formulation
of these problems for study, say, on an electronic analog computer,
requires the expression of these large orientation changes by means of
orthogonal transformations., These transformations refer the coordinate
systems, in which the elements of interest are inbedded, to an initial
coordinate system whose orientation is fixed.
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The equations that express the transformed components of & quantity
can be obtained in a simple fashion 1f the orthogonal trensformations of
the coordinste systems involved are written in matrix form and the rules
of metrix algebra followed. The matrices that perform orthogonal trans-
Pormations are rotation matrices. A description of thelr properties and
the algebra they satisfy - that 1s, the rules by which such operetions
as addition and multiplication are performed - can be found in meny places
(see, e.g., refs, 1, 2, 3, and 4), Their application to certain aspects
of problems concerning aircraft is illustrated in references 1, 5, and 8.
One purpose of the present paper is to present the matrix method of per-
forming orthogonsl transformetions in es simple a menner as possible, to
describe 1ts algebra, and to illustrate the algebra in use by several
examples.

The examples in this paper will serve & second purpose, namely to
show that the complete geometry of the problem under study cen be expressed
in matrix form, By ilnbedding any element of interest in a coordinste
system, and by following this coordinate system by means of matrices as
it rotates with respect to ell other elements of the problem which are
fixed in rotating coordinates of their own, & single matrix expression
for the over-all géometry is obtained. From such en expression the
expression relating any two quantities of interest can be derived in a
routine manner. Furthermore, since in any problem there are a nunber of
ways of choosing an appropriate set of rotating coordinate systems, the
compact notation of matrlices which provides & clear view of the geometry
of the problem is especially valusble in permitting the examination of
various possible cholces of sets of coordinates, thus facilitating selec-
tion of one set that may simplify the representation of the geometry on
a computing machine., The matrix notatlion permits this examination to
proceed without detailed computation having to be performed.

Once the choice of coordinates has been made, the parameters that
specify them, such as the angles ¢, 6, and ¥ that express the orientation
of an airplane, can be determined in terms of quantities that occur in the
problem solution, such as the airplane rotation rates p, q, and r. The
examples in the presemt paper also show how the determination of these
parameters, or their rates of change, cen be obtained by matrix methods.
Thus all the geometric expressions required in these problems can be
cbtained by the regular and routine applicgtion of matrlix methods.

A question of notation arises from problems such as those described
in this paper., Not only are there several quantities of interest in each
problem, but some of these quantities have to be expressed in several
coordinate systems. The notation adopted in this paper to satisfy the
requirements of this type of problem is described briefly in the text and
more fully in the Appendix.
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DISCUSSION OF BASIC PROFERTIES OF ROTATTON MATRICES

The first part of the present paper is intended for those readers
who either are not at all familisr wlith the algebra of matrices or are
not accustomed to thinking of matrices in terms of their properties of
performing rotations. The fundamental matrix elgebras, such as the con-
ventions governing addition and multiplication, will be presented in a
general memmer, Orthogonal matrices (which perform only rotetions, and
therefore will be called rotation matrices) form a special group of
matrices and have properties, not possessed by other matrices, which
simplify thelr manipulaetion. Such properties will be pointed out and
subsequently often used.

A glance at the examples in later parts of this paper will show that
the matrices required in & single problem msy form a long chain performing
rotations in succession. The discusslion of the baslc properties of rota-
tion matrices wlll begin with a consideration of matrlces performing a
single rotation, Then the properties of matrices of successive rotations
will be discussed.

Single Rotations

The rotation matrix performs asn orthogonal transformation on some
quantity. This quantity may be a vector or a set of vectors that define
a particular coordinste system. The coordinate systems considered are
three-dimensionel end Cartesian. Three vectors are required to define
such a coordinate system., In this paper, a trlad of vectors defining a
coordinate system (or set of coordinstes) are of unit length, at right
angles to each other (mrtually orthogonsl), and oriented with respect to
each other in such a way as to form a “"right-handed" systen.

Rotation matrices perform the operastion of rotation on these quanti-
ties; that is, the quantity obtained by transformation dlffers only in
orientation from the originel guantity. Not only does it retain its size,
but, if a coordinate system is the rotated quentity, the unit vectors of
the new coordinate system are matually orthogonal in the same way as were
the unit vectors of the old.

Speclal forms of robtatlon
matrices.- The matrices of simplest
form are those that use one or
another of the three unit vectors
as an axls of rotation. In the
sketch adjacent, a new coordinate
system is cobtained from the old by
a robtation through the angle @
gbout the 1 direction. Several

Sketch (a)
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items can be noted in the sketch. The three unit vectors are lesbeled

1, 2, 3. The origlnal set has the subscript o; the new, the subscript n.
The rotation with the 1 vector as an axis 1s said to haeve a positive sense
if it has the sense of rotation of a "right-hend screw" which is advancing
along the positive 1 direction.

If an old and a new set of coordinates are related as shown in
sketch (a), the components of a vector (or the coordinates of a point)
in the new set are related to 1ts components in the 0ld by the followlng
set of equations:

Xin = Xio
Xom = Xp0COS (HXgoSin @ (1a)
Xsn = ~Xzo81ln Q+Xgocos ¢

vwhich 1s the same relation obtaining between the new unit vectors and the
old

In = 1o
Zn = B5co8 P+3psin @ (1p)
3p = =205in @+3,c08 @

This system can be put into the following tabular form from which the shape
of the matrix emerges:

\xlo X20 Xap
Xin 1 0] 0

Xon [0 cos @ sin @ (2a)

¥sn |0 =-sin @ cos @
How to get equations (1) from the table is clear: one reads along a Tow,
mltiplying each member of & row by its columm heading. The arrangement
can be changed to read like en equation 1f proper conventions are adopted
to multiply the elements of the table by the correct quantity to glve
equations (1):

Xin| = 1 0 0 X3,

Xop| = | 0 cos @ sin | |xog (zb)

Xgn) = | O -sin @ cos Xg
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With the proper conventlons adopted, this table is an equation which cen
be symbolized thus: ’

[new components] = (@)[old components] (2c)

where (@) is the matrix with elements:

1 0 0
O cos ¢ sing

O -sin @ cos @

Equallty indicated between two matrices holds if and only if
corresponding elements are equal, Corresponding elements of two matrices
are the elements in the same row and columm in the two matrices. The
convention used in multiplying matrices can be determined by comparing
equations (la) and (2b). In equation (2b) there are three matrices
whose symbols are [new components]. (), and [o0ld components]. The first
and third, column matrices, have three rows of elements all forming &
single column. The (@) matrix has nine elements grouped intc three rows
and three columms. Equations (1) indicate that the product (2Zb) or (2¢)
stands for three equations. To obtain the first of equations (1), the
elements of a given row of (@) are multiplied by each one of the elements
of the followling columm matrix, end the products edded. For example,
for the first row in (@), the element of columm 1 is multiplied by the
element of row 1 in [o0ld components]; the element of colum 2 in (@) is
miltiplied by the element of row 2 in [old components]; element of
column 3 in (@) is multiplied by the element of row 3 in [0ld components].
The sum of these products is equal to the element of the first row in
[new components], The procedure is repeated for each row of (@) until
all three rows of [new components] are obtained.

The three simplest rotation matrices together with a sketch of the
operation each performs are shown below:
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@" To= Tn 10 0 b

0 cos @ sinol| = (o)

- ¢ O -sin ¢ cos @
2

3o

ﬁ cos 8 O -sin 6

272, o 1 o | =(e) ? (3)
309 3n gin @ 0 cos @
sketch (b)
-,
v
2 Tn
n_ &
2, * cos ¥ sin ¢y O
3°=§n gin ¥ cos ¥ Of = (v)
Sketch (e) o} 0 1

-

The three special forms of rotation matrices given next to the sketches
are the operators most commonly employed because they are simple 1n form
and easy to visualize. It is not necessary for one to know their exact
forms offhand, since they are easlly derlved.

General form of rotation metrix.- Each of the three rotatlion matrices
in equation (3) is & special case of the general form of rotation matrix.
The derivation of this general form follows easily from certain comsider-
ations concerning vectors. (The notation used below and in subsequent
sections of this paper 1s explained in the Appendix.) A vector is a
geometric or dynamic quantity, containing e magnitude and & sense, which
exigts Iindependently of any description of it in a particular coordinate
system. Thus, if ¥ is some vector, say, & veloclty, then

— - -1 =g 1: = -0 -0
T = vinl +Von2 +van3 = Vipl +Vop2 +Vao3
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where the subscript and superscript n's and o's refer to new and old
coordinates, respectively (the new having been cbtained from the old
coordinates by a rotation), and the subscript J:\.unibezf]s:l iE%icate E}%le com-
ponent of the vector. The dot product of ¥ with 17, 27, and 37 in turn
gives

o)

- =n =0 .1
viol 'in+Va)§o'l +Vgp3 -1

- O =1 =0
Viol °. §n+V20§l 3 +Vz03 '—gn

— — =1
v 10I c. 3n+v20—2-o -3 n+Vso§o' 3

F'l = Vin

— ]
'V'"§ = Ven

— =N
V37 = Vgn

[, ¢ -—tl =11 -t]l =11 -1 =1 -]l =1
since T -1 =553 =33 =1l apd T8 = T3 =8>3 = 0. This set

of equatlions can be represented in the matrix form

Sl -0l .0 n .0 .1] [ 7]

Vinl =1 <12 21 3 -1 Vid
0 =D =0 =l =0 =1

Ven| = {T 2 22 3 -2 | |ved (k)
=0 =N =0 =N =0 -1

van| = (T3 2°3° 3°.37| |vaq

The 3x3 matrix in (4) is the desired genersl expression. Since the vectors
in the matrix are of unit magnitude, the elements in the matrix are simply
cosines of angles. Each of the three rotation matrices in (3) is a special
case of that in (4) obtained by making one of the unit vectors of the new
coordinate set colncide with ome of those of the old. The sines of angles
in (3) are the cosines of 90° plus or minus those angles.

Successive Rotations

Matrix multiplication.- In writing out the terms resulting from the
miltiplication of a three row, three column matrix (called a 3x3 matrix)
by another 3x3 matrix, one follows the same procedure as that described
in the previous section. The product is & 3x3 matrix, rather than the 3x1
matrix obtained above. The procedure described furnishes the elements of
one column of the product. For example, let (C) = (4)(B):
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€11 Ciz Cis a1y 812 8as b11 biz Dbas
Cz1 Czz Czz| = |821 8z2 ags b2y bzz bag
C3) Caz Cas 831 8az B8as bg1 bzz bas

811b13+81obz1+81ab81 811D12t812bsstB1gbas  &11b1a+815bostaI1gbaT
= lazibiytagzboitepabgl  @21bistassbostassbaz  82ibiat+8azboatassbas

831b11+832b21+833ba1  851P1xtea2bootagsbgs  Bgibigtegobagtessbas

The subscripts on the various elements indicate the position of the ele-
ments in the matrix. The first subscript indicates the row, the second,
the column the element occuples. Since the elements of two matrices are
equal if the matrices are egual, nine equations are contained in

(¢} = (A)Y(B). Two of the nine are:

ci1 = 811b11+815bo1t813bsy Ciz = a11biztaisbontlisbae
3
All nine equations are contained in the expression cjix =j[:aijbjk-
J=1

This expression also describes the method of mltiplication, for, to
obtain the element in & given row (i = 1, 2, or 3) and colum (kx =1, 2,
or 3) in (C), each of the J column elements (j = 1, 2, and 3 in turn)
of row i1 in (A) are multiplied by each corresponding row element J

(the same 3 =1, 2, and 3 in turn) of colum %X in (B) and the resulting
terms are added,

This mltiplication procedure is general.l Tt therefore applies to
two special multipliers, the unit matrix end a constant.  The unit matrix
corresponds to the number 1 in arithmetic which has the property that the
product of the multiplication of any number by 1 is identicel to the origl-
nel number, This property can be stated operationaslly in the following

1The muitiplication procedure 1ls general provided the matrices are
conformeble (ref. 1, p.g). Conformabillty means that in the product

(¢) = (A)(B) or cyx =Zaijbjk there must be as many elements with

j=1
index J in Djk as there are in ajj.
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way: Unlty is that mmitiplier which operates on a multiplicand in such
a fashion that the resulting product is the originsl multiplicand. The
metrix with this property is the unit matrix, which has the form:

1 0 0
0 1 O
0 0 1

It can be written synbolically as (I), and is the "diagonal matrix" all
of whose main-diagonal elements are unlty.

The product of & constant times a matrix is a matrix each element
of which is the constant times the corresponding element of the multipli-
cand matrix, Thus, if (C) = k(B), then ¢jj = kbyy. The equation can
also be written

X |baibasbes| = [0 X 0| |barbosbaos
bg1bgsbg 0 0 k bg1bazbag

A constant can therefore be called a dliagonal matrix with equal and
constant elements.

Matrix addition.- The sum of two matrices is defined as the matrix
whose elements are the sums of the corresponding elements of the added
matrices: 1let '

ai11812813 baibisbis
(A) = lazi8onans and (B) = |baibaogbos
831832883 baibzsbs

Then (A) + (B) is the matrix:
8131+P11 &1otbis 8i1g+bis
821+Pbo1 8potbps  8zsibos
8a1+bgy 8aztbzs agstbas

This identity can be written in the form (A)+(B) = (A+B).
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Geometbric interpretation of rotation matrices.- The rotation mabtrix
not only partakes of all the properties of matrices given above, but alsc
nmey be interpreted geometrlcelly as an operstor that rotates a coordinate
system through some angle about some axlis glven in the coordinate system.
Multiplication of two such operators corresponds to two successive rota-
tlons, If the operation depicted in sketch (a) is followed by another
identical operation, the total operation must comsist in & simllar rotation
of twice the magnitude of elther one. That the algebra agrees with the
geometry is seen by multiplying the rotation matrices together:

1 0 o} 0 o}
(92)(g2) = |0 cos @z singz| [0 cos @y sin gy
__O -8in @2 cos Q| {0 -sin @1 cos @
1 (o] o} 0 0
= |0 cos gzcos @1-8in Pasin @1 cos gasin itsin Ppcos Q1| =)0  cos(pz+py) sin(pz:)

[0 -5in Qpcos @r-cos @asin @y -sin Qpsin @r+cos Ppcos Q1 0 -sin(g=tp1) cos(@a+g)

The order of the matrices implies that the operation (@i1) is first
to be performed on whatever is to its right, followed by operating by (¢z)
on everything to its right. The order 1in which two matrices are written
is usually important. (When a number of finite rotations are performed
gbout the same fixed axis, the order is not significant.) The following
examples of rotation about two different axes illustrate that the order
in which the rotations are performed is importent.

! 0 0 [cos & 0 -sin @ cos 6 0 -sin 6
0 cos ¢ sln o 0 1 0 = {sginpsin @& cos @ sin ¢ cos @
hp -sin @ cos @ Lgin 6 0 cos 0 Lgos ¢ sin & -sin @ cos @ cos @
eos @ 0 -sin 1 o) 0 [cos & sin 6 sin ¢ ~-sin @ cos

o 1 0 O cos ¢ sin g = (o) cos @ sin ¢
sin@ O cos @f |0 -sin@ cos @ 5in @ -cos 6 sln @ cos 6 cos
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If the o's and O's are respectively equal in the two products, then
the product matrices are not equal.

Matrix inverslon,- After a new coordinate system has been obtained
by rotation from an old, it is clearly possible to regain the old by
another rotation. The second rotation is said to be the inverse rotation.
If the matrix of the first rotation is (@), that of the inverse is denoted
by (@)=*. In symbols, 1f

[new components] = (®)[old components ]
then

(¢) " *[new components]

[01d components]

Tt follows, by multiplying the first equation by (¢)~* and the second by
(¢) that (@)(@)~* = (I) = (p)~*(9p) where (I) is the unit matrix, Written
out, the matrix (¢) and its inverse have the following form:

1 0 0 1 0] o
(p) = [0 cos @ sin o (p)™* = |0 cos ¢ -sin ¢
0 -sin@ cos @ O sing@ cos @

Upon examining the two matrices, one sees that the inverse matrix can be
obtained from the (@) matrix by exchanging the angle -9 for every .
This property of rotation matrices, which i1s not possessed by other
matrices, agaln confirms that the results of the matrlix algebra agree
with the geometry, for the inverse rotation geometrically is the same as
a rotation in a negative sense.

Tnversion of & rotation matrix can also be achieved by transposing
its elements, where the transposed matrix 1s obtained by exchanging ele-
ments across the msin diagonal of the original matrix; that is, if (B)
is the transpose of (A), then bjj = ajy, for example, bip =agi. In
(p), since this operation replaces sin @ by -sin ¢ and vice versa, it
1s equivalent to replacing ¢ by =-0. '

Reversal property.- Suppose there has been & sequence of rotatlons,
for example, a (@) followed by a (@) rotation., A consideratlon of the
geometry indicates that to return to the old coordinates from the new,
one mist rotate first through (-8) or (8)™%, then through (-p) or (@)~*.
It is easy to show that again the algebra and the geometry agree. Flrst
of all the product operation (6)(®) is itself an orthogonal rotation
operator. Hence [(8)(@)171[(e)(9)] = (E£). But since (6)~*(8) = (I) and

®)"2(e) = (I), 1t mst be that () *(6)7*(6)(9) = (I). 4As a result,
o) o)™ = [(6)(9)]™*. 1In words, the inverse of & product of matrices
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is the product of the inverses of the matrices taken in reversed order,
Tt is worth repesting that the property (-9) = (p)"t 15 not a genmeral
property of matrices, but belongs to those matrices that perform only a
rotation. '

EXAMPLE APPLICATTIONS

Rotation of & Vector About an Arbitrary Axis

For a first exemple, the form of single rotation matrices will be
generslized, The rotation will no longer be performed about one of the
old coordinate directions, but about an arbltrary axis, that is about an
axis ¥ of unit length with components mn,, ns, and ng in the given
coordinste system, Another difference from the previous discussion is
that in this example a vector P is to be rotated gbout the axis 1
through some arbitrary angle ¢ into & new position J. Heretofore, the
coordinate system was rotated, and to transform a vector meant to express
the same vector in two coordinate systems with the same origin but with
one system rotated with respect to the other. This difference, however,
reduces to a matter of sign, for to rotate a coordinate system through a
positive engle is entirely equivalent to rotating a vector in the (now
fixed) coordinate system through the same angle but in the opposite sense.

The quantities given in the problem are 1llus-

_ trated in sketch (d). A unit vector n has the
components nj, np, and ng in the coordinate system
formed by the triad of unlt vectors 1, 2, and 3.
Therefore n = nil+ns2+ng3 and ni2+nz24ns2 = 1. It
is desired to rotate another vector T (with given
components Pi, Do, and ps) through some given angle
@ into the new position shown in the sketch as the
vector T. The problem is to find the new components
i, 92, end dg in terms of @ and the components of
P and H.

Sketch (4) This problem has been solved both by matrix

methods (ref. 1, p. 253; end ref. 3, p. 96) and by
pure vector methods (ref. 2, p. 168). The method here will use only the
matrices already discussed, and will illustrate the approach adopted in
succeeding examples in this paper. The general procedure is as follows:
The vector T will be thought of as one of a triad of unit vectors forming
a coordinate system. The vector P will be expressed in this coordinate
system which will then be rotated in a negative sense through the desired
angle ¢. The resulting new components of P will then be returned to
the fixed coordinate system by an inverse transformation. These will be
the desired components of q.
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Let [(8)(¥)]™T be the matrix transforming P from the fixed into
the n coordinate system., Then

Q1 P1
az| = [(6)(WV)I(-)[() (1™ |p= (5)
da P
wWhere
cos & 0O =-sin @ cos ¢y siny O
(e)(¥) =} © 1 0 -sin ¥ cos ¢ O
sin 8 0 cos 8 o o 1
cos 8 cos ¥y cos @ sin ¥ -sin @
= ~sin ¥ cos ¥ 0
sin 8 cos ¥ sin @ sin ¥ cos @
and
1 o 0
(p) = [0 cos @ sin g

-sin @ cos @

The angles ¥ and 6 can be eliminated by means of the components of n
in the fixed coordinate system. Since

nj cos 6 cos ¥ cos @ siny -sin 6] |1
na|l = [(8)(¥)In = -sin ¥ cos ¥ 0 o},
Ng sin 8 cos ¥ sin 8 sin ¥ cos 8 0

ny = cos 8 cos ¥; na = -sin ¥; ng = sin 6 cos ¥. From the latter
expressions one gets: cos ¥ =~n:2ng2; cos 9 = nl/\512+n325
sin 6 = ng/Nni2ing2. Therefore,
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G oZms s o
Nn;2+ng? vVni24ng?

[(6)(¥)] = |na ~ni2ng2 0

-NoNg ny
na
| ~ni2ing2 Nny24ng2)
and
Fll Nz g B
=ning -Nghs

{(e)(llf)]-l = 'Jn12+n32 \/n12+n32 ,\5124_1]62‘

-Ng n,
L_'J n12+ng2 0 Nni2+ng®

Performing the operatlions indicated in equation (5) one obtains a matrix
with the following elements: ) - T

The elements of the first column

n12ng2coé cp+n32cos Q
(n124n52)  (n124ng?)

Il12+

n,2,21202%c08 @ingZcos @+132(0324152)c08 @ 2008 @
(n12+ng2)

]

ninj(l-cos @)+cos @
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Dino-ninscos @ tngsin @

niNsNo-2C08 P=NiNscos @ _ npong2sin g4non;2sin @
ni24ng2 ni2ng2

Niyns +

, Rzt (nz-1)cos @
n12+n<32

-npssin @

ning

ning(l-cos @)~ nosin @

The elements of the second column

ninps(l-cos @)-ngsin @
ns2+(n;24ng2)cos ¢ = np2(l-cos ¢)+cos @

nong(l-cos @)+nisin @

The elements of the third column

nang + DiNan-2cos P=ningcos P +n_2n32sin QP+nzn;2sin @
ni2+ng2 n;2+ng2

= ning(l-cos @)+nssin @

ngng (1-cos @)-nisin @

ng2 + B2”na®cos @in,Zcos @
n12+n32

= ng2(l-cos @)+ D2”ng®cos @iniZcos Ping®(ny24ng?)cos @
n12+n32

= ngns(l-cos @)+cos @
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With these results, equation (5) can be written in the form

oy hang(lecos @)+cos @ ning(l-cos @)-ngsin ¢ mning(l-cos @)+ngsin ¢} [B1

ds| = |nino(l-cos )ngsin @ ngnp(l-cos @)+cos @  nong{l-cos @)-nisin ¢| |pz

% nyng(L-cos @)-ngein ¢ ngzng(l-cos @)+nisin ¢ ngng(l-cos @)+cos @ Ps
niny Ning Dibg 0 =g g} ips

(L-cos @) | non1 nzne nang| +cos o(I)+(sin @) | ng © -y} } |p2| (6)

NgNi NHally Nallg -np n3; O Ps

where (I) is the unit metrix. To see that expressions (3) are contained
in equation (6) one must recall that whereas equetion (6) expresses the
rotation of a vector in a fixed coordinaste system, expressions (3) rotate
the coordinate system with the vector fixed. Slnce the two operations
are opposite in sense, the angles in the matrices will be opposite in
sign. With this in mind, after letting T equal first n,I, then npZ,

then ng3, and letting ¢ equal first -, then -9, then -¥, one obtains
the expressions (3).

A velusble by-product of equetion (6) is obtained from considering
the vector T-T generated during a small time interval by a rotation

through the small angle ¢. If, in the limit as At—>0, ¢/At->9 = T,
then

Yim (2208 9) o ana 1im B . %
At->0 At At>o O

vhere T i1s the velocity of the point p as the vector P robates about
T with angular speed w. Equation (6) becomes

g

— —_ -~ -
nin;-l nzns, n;_ns_} P—:D 0 -ng H—J o2

tim FR o 1am (2208 @) Ynon,  manpel memg | | pe|+ tm EEL2 lng 0 em| |pe
At>0 At AWDO At A0 At

ngn, ngng natg-l | Pa -np 13 O Ps
L S B - - L4
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or
g 1 0 ~ug
P=0¢ |ng O -ny P=jwg O -wf P=wxp (7
o ny 0 =0l 1 0]

where wy, wp, and g are the components of the anguler velocity vector
wand wX P 1is the vector or cross product of the vectors w and Pp.

Iocation of an Airplane on the Surface of the Earth

One problem of some current interest concerns the study of the motion
of an airplaene over a significantly large sector of the surface of the
earth. With a simplifying assumption, the analytlcal expressions of the
geometry required in this problem provide a good example of the use of
matrices in orthogonel transformations., The reason for the need of
geometry here is that the elrplane equations of motion require specifi-
cation of the gravity vector direction which changes as the airplane moves
over the earth. For the example, the gravity vector is assumed to be
directed toward the origin of a set of coordinates which is located at
the center of the earth (called earth coordinates).

The expression of the direction of the gravity vector with respect
to the airplane requires knowledge of the posltion and orientation (that
is, heading) of the airplane with respect to the earth coordinates. This
knowledge is determined from the time history of airplane velocity, and
the specifications of the airplane’s initial position and velocity. The
geonetry is set up by establishing a set of earth coordinates which
rotate in such a way that the moving airplane is located on one of the
coordinate directions, In the sketches below, which are ilntended to

Sketch (e) Sketch (f)
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define the parsmeters used in the geometry, earth coordinstes are labeled
e, and slrpleane body coordinates are labeled a. "

Sketch (e) shows how "present earth coordinates" are derived from an o
original set of earth coordinates: +the sequence of rotations, each of S
vhich is made in a positive sense, is first through the angle ¥, then .
through the angle 84 finally through the angle @. Each rotation has the
matrix associated with 1t which is glven by the expression with the cor-
responding lower case Greek letter in expressions (3). Three similar
rotations through angles V¥, 8, and ¢ serve to determine the present
airplane coordinate orientation with respect to the alrplane's original
coordinate system. Sketch (f) shows the relation between the original
earth and orliginal alrplene coordinate systems. The original airplane
coordinates are derived from the origlnal earth coordinates by a 6&-like
rotation sbout the 2°° axis through 90 in a negative sense. Two other
angles must be specified, which relate the airplane's velocity vector to
alrplane coordinates. These angles are shown in sketch (g).

The sketch shows that the airplane
coordinate system is cobtalned from the
alrplane velocity coordinate system
(airplene wind coordinates) first by
a positive robation through the angle ;
-8 (B is the angle of sideslip), then .
by a positive rotation through the
angle of attack «. These angular
designations are conventional.

With the geometry so set up, the
gravity vector is g = -gl _; the air-
plene velocity vector is V = g} H a%d

Sketch (g) the airplane position vector R =Rl
There reméins the need to express g
in alrcraft coordinates and, having ,
expressed ¥ in earth coordinates, to determine the angular rates Y} 8,

and 6.

The equations connectlng the various coordinate systems can be
expressed as follows:

(p)(6)(¥)[initial airplane coordinates]

[present airplane coordinates]

(9)(6)(¥)(-90°)[initial earth coordinates] = -

[present alrplane coordinstes] = (a)(-B)[present wind coordinates] -

[present earth coordinates] = (¢)(8)(¥)[initial earth coordinates]
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From these equations one has

[present airplane coordinates] h

= (@) () (¥)(-90°)[ (@) (8)(¥)I™[present earth coordinates]

(8)
or
ga = (9)(8)(¥)(~90°) (2)(8) ()1 Be )
and
N
[present earth coordinates]
= {(fp)(ﬁ)(\k)(-90°)[('!>)(€’)(Y)]'l ) (@) () [present wind coordinates] &(9)
Ve = {m(e)(w)(-so°)[(a>)(e)(w)1-l @) BT
J

where the subscripts on the vectors imply that the components of the
vectors are written in the coordinate system indicated by the subscript.
The superscript -1 on the product matrix of equation (8) in brackets
means that the inverse of the product [(®)(8)(¥)] is desired. It will be
recalled that [(®)(8)(T)]™ =(¥)"2(©)"(2)~* = (-¥)(-8)(-0). Since the
whole product metrix of equation (8) is used in inverse form in equa,-
tion (9) s 1t will be convenient to obtaln 1t or its inverse as a unit
first and then form the product with (a)(-8).

Equations (8) and (9) can be simplified by setting the angle © = O,
or the matrix () = (I). Only two parameters are necessary to specify
the orientation of & vector in each of the two equations. Agaln because
only itwo parameters are needed, (o) and (-B) are sufficient to express
the alrplane velocity vector in airplane coordinastes.

Equation (9) is:

1e cO® 0 -8 cY =Y G 0 <1} |e¥ =-s¥ O cd@ 0 88| 1 0 O] [eca O =-sx] fcp =sp v
voel =| 0 1 O ]||-s¥ c¥ O|]]lO 1 O© 8y cy O 0 1 0| |0 cp -89 o 1 o sp e O] |O

veel [58 0 e@||0 0 1J]2 0 o] [0 o 1] |8 0 cof |0 = s« 0 eflo o 1o
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where c¢ stands for cosine and s stands for sine, and where

e(-90°) 0 s(-90°) 0 0 -1
(-90°)7* = 0 1 0 =lo 1 0

-s(-90°) 0 ¢(-90°) 10 0O

[<E6cHcY -s8( -sycp+spsbey)  -se(spsy+cpsdey) )
+c@s¥cosy +cas¥(cpey+spsOsy) +cBs¥(-spoy+cPsosy)

+cac¥se -cBc¥spch ~cB8c¥cPpch

Vie cacf =casp =sa | v
c¥eosy c¥( cpey+spsosy) c¥( ~sPoy+cPsosy)

Voe| = =12 ] ep 0 0
~8¥80 +8¥apce +8¥( cpeb)

Vse sacp =-sPsa ca | [O

cBeoey ce( -sycp+spsoey) ce(spay+cpsocy)
+58s¥cosy +888¥(cpcy+s0sosy) +8@a¥( -spey+cpsosy)|

+88c¥80 =88c¥s@es -sg@c¥cpco
(10)

Because of the presence of only one element in the column matrix on the
right, only the first column of the product of the two 3x3 matrices i1s
required. Performing the multiplication, one gets:

Vie _ 7
= cacBl ~e8cocy+cOs sy co+cBe¥so 1 +sp[ -s0( ~sfcp+spsocy )+cBs¥( cocl+sPsOsy ) -

cOc¥spcd ]+sach | -s8(spsy+cpsocy )+cBs¥( -spey+cpsosy ) -cBctepes]

-Yf'l_-e- = cacB[ c¥chsy-s¥s0 1+sB[ c¥( cocy+spsosy ) +8¥sped J+sacBl c¥( -spey+cpsosy ) +

s¥cpch]

v__:? = cacB[ cBeocy+s6s¥cosy+s8c¥s0 1 +8B [ c8( ~sycprspsocy ) +s8s¥( cocy+spsoay) ~

s8c¥spc ]+sacB[ ce sps¥+cpsoey ) +s8s¥( ~spey+cpsfsy) -s8c¥eped ]
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To express the gravity vector in airplane coordinates, the lnverse of the
first (3x3) matrix on the right side of equation (10) is wanted ._oThis
inversion is performed by transposing the matrix, Since g = =gl , only
the elements of the first row of the matrix in equation (10) are needed.
The resulting egquations are

g1a = (-g)[ -s8cocy+cBs¥chsy+ce¥se]
gog = (-g)[ -s8(-s¥cqp+spsacy )+cs¥( cpey+sps0sy ) -cBe¥spes ]
gsa = (-g)[ -s8(spsy+cpsocy )+cB8s¥( -spey+cpsosy ) -cOe¥epes ]

The rotation parameters ¢, 9, ¥, 8, ¥, which are continuous functions

of time, remain to be debtermined, It 1s assumed that the rate of rotation

of the airplane, o® = pl a+q_§a+r§a s 1s know continuously from airplane

equations of motion, The letters p, g, r are the conventional terms
for the components of 2% in alrplane coordinates. The rates c'p, é ¥
will be expressed in terms of p, g, r. In the same way, 6 and ¥ will
be expressed in terms of the components of angular rate about the ea.rth
axes, Qe es Qae, and Qse In turn, the angular rate of rotation of a°

is obtained. from the knowledge of the airplane velocities %n earth coordi-
nates which are subject to the two conditions that R —eRl that is, that
the coordinates so rotate that the coordinate vector 1 remains pointing
at the airplane; and that ¢ =48 = 0.

One convenient method for obtalning the expressions for &, &, and ¥.

is given below. Other methods can be found in references 2 and L. The
angular velocity vector can be expressed in the forms

0% = pT2 e r3%=gT% 452 1§3%" (11)

where the coordinate systems indicated by primes are intermediate
coordinates defined by

T i 720 oo
2% = (o) 2% | = (9)(0)| 3 | = (@(0)(¥) | 2% | (12)
—a =al —ag' -89

3
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Because of the form of the various rotation matrices,

—a._—a' al —ao' —ao' =80

128.3% ; 3% < ;. 3°=3 (13)

From an examinstion of equations (11) and (12), one can realize
that the matrices that will be needed are (¢), (8), and (@)(6) which are
proposed below in tabular form

G- : A
|l 1 o 0 e o TR
() 2 | o e so = |77 P BTF
3 | 0 -sp  cp Ry - o

I 7o 7% 78 .58 18'.3% >

() :+ 3% | o 1 0 _ |52 .ped o' gt ¥ 3%

Ea‘ 56 0 co ?’.Iao' 3'9"-58’0' §a’ .5'30'

ANl - N

T |0 o0 -se jeqs0’ 1=, 3’ 8,0

(p)(B) : z* Qs cp sPcsd = -éa.-iao, -éa_an‘ Ea-§a°'
37 lopso -sp  cweo 2% Pl P
(14)

Now, returning to equation (11) one can solve for . §, 6, and ¥ by forming
the appropriate dot products, then consulting the tables 1n (14):

i t
2 Tt TP

i
o]
I._l
‘H
o
+
H
(O8]

(1%2)

I
7
<.
0]
D
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_— el —o ot =g s=g —5' e—g —g!
8 = plo-3> 4q2°-3% 3030 JIPP 43P

_ qop-rep (15pb)
¥ = p1%-3%0N 1% 370 3R 0" g1 3P0 L3 \
= -(p-P)s6+gspchirepes
= ¥826+qsQco+repes ?(15C)
¥(1-526) = 20 = (gs@+rcp)co
¥co = gsp+rep

The term (p - $) in equation (15c) was eliminated by using equation (15a).

The anguler veloclty of the earth coordinates is

— — — . ) . 1
B - o Thal, Pl T - 6275

The primed coordinates here are the same sort of intermediste coordinstes
as those in equation (11). The procedure just completed for ¢, &, ¥
could be repeated here, But gince_the only changes are the names of the
components and the fact that @ =® =0, © and ¥ can be written down
Just by comparison with equations (15):

Q = p+¥so 0 =0 +%e

6 = qep-rsp e = 05 (16)
1 - e
¥co = gsp+re Yco = 05,

A finsl step remsins in the geometry, the determination of ﬁe. This
vector 1s obtained from the knowledge of the airplane's velocity:
oR

¥ =R = E;3%K
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The term ﬁ expresses the total rate of change of position of the air-
plane, that is, its velocity. When this veloclty is expressed in the
rotating earth coordinates, however, 1%t takes the expiicit form shown in
the expression on the right. The last term of this expression was derived
in equation (7). It gives the full expression for the velocity in rotating
coordingtes 1if the vectg; R is constant in length. The other term in

the expression ebove, g% , accounts for changes in length of R. Since

R = RI®
- —e —e - —Le R .—e —e
Vv = Viel +Voel +Vge3 =1 S:E+ R X1
—e —e —&
= T° B R(05e2°-0263)
ot
or
Vie < éﬂ
ot
Vse = RQge = R¥c@®

Vae =-RQ'2€ = .Ré

These expresslons complete the geometry.

Although some of the transformations obtalined along the way could
have been obtalned more easily without the use of the matrix method, this
method is very valuable in providing a simple way of getting the complete
expressions required in the problem. Furthermore, once & person gets the
feel of the matrix method he appreciates its dual advantages of being a
straightforward method of getting the correct expressions he wants and
of providing a simple and clear view of the transformations required in
the problem. The summsry helow, which actually was the analysis of the
problem used before any computations were made, shows in simple fashion
the various relationships involved in specifying the geometry:
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[present airplane coordinates]

(0)(8)(¥)[initial airplane coordinates]

(9)(8)(¥v)(-90°)[initial earth coordinates]

(c)(-B)[present wind coordinates]

[present earth coordinates] = (8)(¥)[initial earth coordinetes]

To express V = v1® in earth coordinates:
ve = (8)(¥)[(p)(8)(¥)(-90°) 1" o) (B )Wy

The subscripts on the vectors indicate the coordinate system in which
their components are to be expressed. To express g = (-g)i? in airplane
coordinates:

& - {(e)(w){(cp)<e)<w(-9o°)1'l e

To determine the rotation of the earth coordinates:

v =1 §§44R§%xie

ot

Position of a Bomber Relative to an Attacking Alrplane

The determination of the position of a bomber relative to an attacking
airplane is a geometry problem that has to be set up in order to study
weapon fire-control systems by means of an analog computer, The final
result sought in the geometry 1s the orientation of the line of sight and
the range of the bomber from the abttacker, As in the first example, with
the proper precautions, & coordinete system can be assigned so as to make
the line of sight correspond in direction to a unlt vector of the coordi-
nate system., With this assignment made, one seeks the rate of rotation
of the line-of-sight coordinates required to meke R = R1!. Since the
line-of~sight orientation relative to the airplane is desired, its rate
of rotation will be expressed as the alrplane rate plus a rotation rate
relative to the alrplane. Furthermore, since the study of automatic
fire-control systems involves the use of a tracking radar, it will be con-
venient to express the relative position of the line of sight by means of
the same kind of angles by which the relative orientation of the tracking
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line or heading of the radar antenns is expressed, The precaution

mentioned above concerning the assignment of a coordinate system to the v
line of sight can be specified in a way to bring about the correspondence
between the tracking line and line-of-sight systems. The condition will

be: since the antenne does not bank relative to the airplane, neither

will the line-of-sight coordinstes.

The velocity of the bomber, P =

voI1P, is assumed known. The sir-

plane velocity given in wind axes is ¥ = val angle of attack, o,
sideslip, B, and the alrplane angular velocity, Qa pl +q2a+r3a, are
aesumed to be obtainable from the solution of the airplane equations_of
motion., Omne can obtain the angular velocity of the line of sight, ﬁz,
by finding its components from the equation

'GZ ='\7’€—"7a = J-.-L

i

%w{ﬁ% x Tt (17)

As before, the subscrlpts indicate the coordinate system in which the
vectors are to be expressed, Equation (17) implies that the bonmber and
alrplane velocities are to be expressed in line-of-sight coordinstes.

=8,

The transformation from wind coordinates (in which v = vaiw)-to -
line~of~sight coordinates can be achieved by

[1ine-of-sight coordinates]

Sketch (h)

(8)(A)[airplane coordinates]
(B)(A)(a)(~B)[wind coordinstes]
(18)

where (A) performs a rotation about
3% and (E) performs & rotation
gbout 2° as shovn in sketch (h).
The nomenclature and order of
rotation correspond to usage in
some present fire-control systems,
The magnitude of these angles E
and A specifying the relative
orientation of the line of sight
is the fingl desideratum of the
geometry.

If the bomber veloclty coordi-
nates are first trensformed into
wind coordinastes, the rotation matrix
in equation (18) will complete the
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transformation to line-of-sight coordinastes. It 1s convenient to trans-
form the bomber veloclty coordinates first into the initlal attacker wind
coordinastes, then transform them into present wind coordinstes., The
transformations can follow the scheme:

[bomber coordinates] = (@P)(¥)[initial wind coordinates]

]

[present wind coordinates] = (oW)(6V)(¥W)[initial wind coordinates]

which gives the transformation

[present wind coordinates]

= (oW)(e¥) (¥ )(-¥P)(-gb)[bomber coordinates] (19)
The property of rotation matrices that (yP)~' = (-¥P) has been used in
equation (19). Now, since (¥¥) and (-¥) are rotations sbout the seme
axis, (¥W)(-%) can be written (¥) where the angle ¥ = W.yb,

The complete problem now has the form:

( B
e N

ve1|= | Rel, | = (E)(a)(x)(-)<(e)(E)(¥)(-€P) |O | -0 |) (20)
vaq| RO, LO 0

The superscripts in o¥ and 8Y can be dropped without ambiguity. The-
quantities @, 8, ¥¥ are to be obtalned from ﬁa. The angular rates,
Gb, ¥ s specifying the bomber motions are assumed known; E and & are
to be obtained from the relative angular veloclty T = al-0%, The
matrix (a)(-B) is given in equation (10). The matrix (E)(A) is obtained
from (a)(~B) by substituting E for o and A for -8. Then :
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cEcA cEsA =sE cacf ~casB  =sq

(B)(A)(a)(=B) = [~8A c& O 8B cg O

sEcA sEsA cBE sacp =Bfsa co.

cEcAcacp+cEsAsB-sEsacf -cEcAcasp+cEsAcB+sEspsa -cEcAsa~sEco,
= -sAcach+cAsp shcasptcAcp sAsa

sEcAcacB+sEsAsp+cEsacp -sEcAcasp+sEsAcf-cEsfsa -sEcAsatcEca

The matrix (8)(Y) can be cbtained from the matrix (E)(A) by the appropriate
literal substitutions. Then

7 0 0] [cecy ooy -s8] [caP 0 s6Y

(0)(8)(e)(-6P) = |0 oo 80| |-s¥ c¥ O 0 1 ©
0 =80 c? spcY s8s8Y c@© -Eseb 0 c@

e8c¥cabisesal c8s¥ cBcYsgP-s9caYP
a | ~c0s¥cEP480(s8c¥c8D-0880) cOcT4stsOs¥  -cOs¥s8Pist(sac¥sePicges?

505¥cBb00(s8c¥cBP-c8s8D)  -sbc¥+c0s@sY  s0s¥sPicd(sBe¥aeb+cacaD)

The quantities &, ©, W, &, and A remain to be determined; @P
and %P are assumed given, The three angular rates &, @, and s by
means of which the airplane wind coordinates are specified, are entirely
analogous to &, & and ¥ in equations (11) and (15). Instead of p, g,
and r, however, the wind coordinate rates OQViw, 0¥y, and Q%5 must be
used, These components can be found as follows. Let £V be the angulexr
velocity of the alrplene with respect to the wind axes. Then

-
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This equation is again equivalent to equation (11) for the condition
® =@ = 0. The individual expressions can be obtained from those on the

right in (16) after the appropriate literal substitutions

Qal;w = Bsa

Qa"w = &'
28,

@2V = feg
a8

The wind axis angular velocity, T = ﬁ.a-'ﬂ'&-w has, therefore, the
components in airplane coordinates Qwa= pBsina; Q¥ = a-& ;
Qwa= r+f cos o . These components are transformed intgacomponents in
the wind axis system through the transformation inverse to (a)(-B). With
that transformation done, &, &, and ¥¥ are expressed in terms of
ps 45 ¥, &, and B.

The quantities A and £ are found in similar fashion, being analogous
to -8 and @, respectively. The relative velocity of the line of sight,
T, equals TL-T1% . The two components Qt; and Ql, are found from equa-
tion (20); T is expressed in lir.ye-of-s%ght coordinates by means of the
transformations: IT;’ = (E)(A)ﬁg . Then A and E are given by

E =0

2Z+P sin A-q cos A

922
Q57

A cos E = ﬂgz - sin B(p cos A+q sin A)-r cos E
Rotation Matrix Method and Gimbaled Mechanisms

The matrix method gives an extremely simple method of analyzing
gimbaled mechanlsms because the angles in the matrices can be chosen to
correspond to the ginbsal angles of the mechanism, §
Consider the antenna depicted in sketch (i). The N
3 axis is free to rotate in bearings mounted on a A
base and carries a frame which can be called an N _
outer gimbal., Call -TI'y; +the angle made by the == — = |
rotation of the axis relative to the base. The
2 axis is free to rotate in bearings mounted on | !
the outer gimbal, and carrles the radar antenna I
with 1t, Call -Iy +the angle made by the 2 axis |
in turning with respect to the oubter ginbal. {

These physical angles, each measuring a rotation -3

Sketch (1)
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ebout an axis of the mechanism, are the same as the anelytical angles,
each of which describes a rotation ebout an eanalytic axis. The analysils!
angle A 1is measured by -['gc , and E by -I'{ .

An orientation gyro is asnother gimbaled mechanism, Sketch (i) repre-
sents a gyro if the 2 axls, instead of carrying an antenns, cerries another
ginbal that supports the gyro rotor, and if this rotor has its spin axis
along axis 1. An orientation gyro has the property that its spin axis
tends to maintain 1ts orlentation in space no matter what the motion of
the base., Then the orientation of coordinates in the base is related to
axes fixed in the inmer gimbal by (ref. 5):

[base coordinates] = (Io)(r'y)[iuner gimbal coordinates]

Customerily in the analysis of alrplane motion, the present alrplane
orientation is described relative to an initial orientation by the angles
¥(yaw), 6, and @ . Hence :

(0)(8)(¥)[inttial coordinates]

[present airplane coordinates]

(p)(8)[yawed coordinates]

By fixing a gyro to an alrplane appropriately, o and I'{f can measure @
and 8 directly. The correct arrangement for the measurement of ¢ and @
requires the 3 axis aligned with the negative airplsne 1 axis, 2 with the
alrplane 2 exis, and 1 with the alrplane 3 axis under the null conditions

@ =6 =0 and (sketch(i)) I, =Ty = 0. Alrplane yaw is not measured.

Thils gyro arrangement corresponds to the standard vertical gyro arrangement.

Transformation of Moment of Inexrtis

Becguse they offer a good example of the use of vrotation matrices,
the equations of transformation of moment and products of lnertia and of
the force and moment derivatives of ailrplane dynamics will now be derived.
The special cases involving a transformation from one body axls to another
through a constant 6-like-angle are well knGwhn (e.g., ref. 6) But since
transformation equations, if their derivation is not understood, cen be
misused, it is desirable to derive the transformstion in general, and
~ illustrate the general method by a particular and common example.

The fundamental dynemical law containing the moment of inertia is

5 =(Im
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where T is the angular momentum vector, W is the angular veloclty
vector, and (J) is used here to represent the moment of inertia matrix

Iex Jxy Jxz
(7)

Iy Jyy Jyz
Jdxz Jyz dJzz

Jm =ﬁy2+22)p ar

Ixy =:/;qrp dr, ete

where p 1is the mass density of the body at location =x, y, z, and dart
is an element of volume.

The clue to determining the law of transformation of (J) is the
recognition that equation (21) is a general dynamical expression having
the same form no matter in which coordinates 1t may happen to be expressed
in any particular example, Independently of the coordinates in which they
are represented, angular momentum and angular veloclty are connected by
equation (21):

Do = (Jo)uo H Dn = (J)%n (21)

Now we have seen in transforming airplane and bomber velocity that the
components of a vector transform in the same way as do coordinate systems,
Thus, if I' 1is a constant angle of rotation about some axis so that

[new coordinates] = (I')[old coordinates]

then

= (P)io H Wn

]

()8, or W = (I)™®y

E”

then

= ([P0 = (TNI)(T) 8y = (In)oy

gﬂl



32 NACA TN 3968

The transformation sought hss the form
(In) = (T)(Fo)(r)~*
If (r) is & transformetion through a 6-like angle, then

[cr 0 -sT] [Jxx Jxy Jxz] [ef O sF

(Jn)

0 1 0| |dgy Jyy Jyz| |0 1 O

sI' O cl Jxz Jyz Jdzz s’ 0O eo

s

[T BT+ 55827 =2T gz ST el JxyCl=Tyz8T  (Txx-Jzz)sTel+Ixz(cBl~52T)

= [dxycl~Jyzsl - Jyy Jxys+Jyzcl

((Fxx-Tzz)sTel+Txz (B =s2T)  JxysI+Jyzel'  Jxxs2l+Jzzc2T+2Jxzsl el

(22)

Transformation of Force and Moment Derivatives of

Alrplane Equations of Motion

To determine the law of transformation of the force and moment deriva-
tives occurring in the eguations of airplene motion, it is necessary, as
with the moment of inertia, to find the derivatives in an equation ‘whose
form remeins constant under the transformstion. If the dependent varisbles
are the six components of linear and angular velocity, the equations can
be written in vector form as follows: o

- [R]+() k]

> (M) [v]+(Me ) [@)+ (M5 ) [B]

(23)

2 [51+(2)[F)

> (My) [v]+(Ms) [Q]+(Mg) [T]

where h is the linear momentum, 1_3 1s the angular momentum, v is the
linear velocity, @ the angular veloclty of the airplene, and
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0 -r gq X O Xy 0 X O 0 Xge O
(@) = jr 0 -p|; Mm)=]0 ¥ of; (Mz) = [fp O ¥n ; M) =lo 0o T¥5
< p O Za O 0 Zg O 0 Zge O
8g, U 0 Iy 0 0 Lr Iga O Ly
[8] = |8} s [Vl =|v]; (M) =[ma © i (M) =0 M Of; (Ma)={O Mge O
w 0 & O Np O Rr Ba O N

The transformation law of each of the (Mj) in equation (23) is identical
to that of the moment of inertia, and is derived in the same way.
Glauert's formlas (ref. 6) are obtained using the @-like rotation matrix
(I') as in equations (22). For example, replacing (J) in equations (22)
by (My) one obtains for the new X'y +the expression:

X'y = Xy cos2=(XytZy) sin I cos I'tZy sin2T
CONCLUDING REMARKS

The present paper has attempbed to show how convenient it is to use
rotation matrices when one is setting up the geometric aspects of dynamical
problems, A rudimentary knowledge of certaln aspects of matrix algebra
provides & tool entirely adequate for the solution of these geometric
problems. The compact notation of matrix algebra permits the clear view
required for their straightforward solution. The detailed computation
of the expressions required in a particular problem becomes s matter of
routine, and can easily be checked for errors. No algebreic dexterity
is required to determine the parameters involved becaunse they are obtained
by the same direct methods used in the rest of the problem. Many of the
parts used in one problem can be saved and used in other problems,
Finally, because planning and computing become distinet tasks, it 1s a
simple matter for one to devise and Investigabe various paths to the
solution of the geometric problems without performing any computations.

Ames Aeronautical Leboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Mar. L4, 1957



34 NACA TN 3968

APPENDIX
A DESCRIFTION OF NOTATION

Problems whose answers are currently being sought on similators have
caused e need for a uniform and consistent notation. The need flows from
two sources: frequently more than one quantity of a sort is used in a
single problem; and a single quantity is often required in more than one
coordinate system. The person who is sbtudying the problem 1s certalnly
famlliar with the meanings of the symbols he employs. But 1f, as often
happens, he employs a new lebtter for each new quantity, and still new
letters for some componente of these quantitles, his audience must have
constant recourse to a glossary of synmbols., Some people, to avold this
pitfall, use & shorthand of subscrlipts by which they distinguish between
quantitles of the same sort. Unfortunately, this shorthand, which is not
notation, quickly becomes too cumbersome.

The notation proposed for use in the simulation of dynemical problems
has three fundamental parts. The base letter of a quantity refers to
quality; it indicates the sort of thing described. Superscripts are used
to distinguish two quantities of the same quality. Subscripts are used
to specify the coordinate system In which a quantity is represented, and
to name the components of a quantity in & particular coordinate system.

For example, the symbol ¥ designetes & linear veloclty; 7P is a pexrticu-
ler linear veloclty, say, bomber veloclty; ?3 slgnifies the representation
of bonber velocity in some particular reference system, for example, in
attacker wind coordinates.

When modification of a base letter by superscripts or subscripts is
not required for clarity, 1t should not be used, Use of { for the
angular velocity of the line of sight relative to the attacker exemplifies
the simplification possible., In this case, of gll the angular veloclties
considered one need not have & superscript, It is coavenient that the one
angular veloelity thus singled out be either the one most used, or the one
that otherwlse would have the most complicated superscript. There are
many places where modification of a base letber is superfluous.

Certain letters are favored over others for certaln sorts of quanti-
ties because of custom, or becsuse of their mmemonic value. It seems to
be deslreble to reserve Greek letters for angles and anguler velocities.
The angles ¢, @8, ¥ have been used to describe the orientation of a body
with respect to a fixed coordinate system. Other letters describe ori-
entation with respect to moving coordinates. Fach of the letters ¢, @,
¥ refers to a particuler sort of angle, that is, one generated by a
rotation sbout a 1, 2, or 3 direction. It seems preferable to capitalize
these letters simply for typographical reasons if they are to bear super~
scripts, The use of the smell letters ¢, 0, and ¥ +to indlcete the
orientatlion of en sirplane body coordinste system, and p, g, and r o



NACA TN 3968 35

represent alrplane angular velocity components in body coordinates is
honored by custom. It seems undeslrable to change customary symbols when
their use is not confusing and when they adequately fit the description
needed.,

Another type of nobation, a schematlic representation of rotation
operations, provides a convenient formulation of the geometry involved
in a problem. It is derived from the fact that resolvers are the physical
means of performing rotations in analog equipment.

Tnduction resolvers (ref. T) have the property of converting input
quantities Ay and By to output quantities Apn and Bp where _
An = Apcos '+ Bosin T' and Bn = -Apsin I'+Bocos I'. That is, if A =1,
B =2, and I' =¥, the matrix (¥) and the resolver below perform

In 1o To —] +F—>In
2n| = (¥)| 2 20 — —> 2n
3n 30d 3 > 3p

equivalent operations. The presence of the + s8ign and the short circult
in the resolver symbol should be noted. The + sign indicates which out-
put quantity cdntains the +sin ¥ term. For an angle whose positive

sense agrees with the positive sense of the coordinate system, the 4+ sign
follows the indicated short circult in the cyclic order 1, 2, 3, 1, 2,

. +« o « Using this resolver symbol, one can write the matrix equation

(F°72), = (a)(-B)[(0)(8)(¥)(-&) ¥-v2]

in the form
“Vie
VI% — ¥ + é" (Vb_vﬂ)rc
0 * + ~(vP-v),
— + -+ o b_ Q
° T ] I ) I T (Vg
-e7 A e @ | -B | @

The latter form is more explicit than the former. It conveys enocugh
information that a person can use it rather than the various intermediste
eqguations to aid him in wiring a problem on a slmulator.
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